

The EZIE mission reflects the timely convergence of a new compact sensor technology and the emergence of high-heritage CubeSats to provide insight into decade old mysteries surrounding the aurora

# OUTREACH





## Inputs

- 20 institutional partners
- APL communications resources
- Existing NASA outreach infrastructure
- EZIE subject-matter experts
- Existing heliophysics data and NASA resources
- EZIE data including SuperMAG Network

## Activities

- 1000 MagPi kits with guides and videos
- AR enhanced scale models
  of the EZIE spacecraft
- NASA Space Apps Challenge
- APL Central Spark events, APL summer camps, subject-matter expert sessions, workshops
- Social media campaigns

## Outputs

- Over 300,000 diverse participants will experience heliophysics-related STEM outreach through the EZIE activities.
- The MagPi program will involve over 1000 indigenous outreach facilitators via existing APL and NASA networks.

#### Outcomes

- Inspire diverse participants and involve them in heliophysics science events and resources Provide a STEM path for underserved audiences
- Increase experience and knowledge in outreach and communications among subject-matter experts

#### Long-Term Benefits

- NASA STEM workforce grows more diverse/inclusive
- NASA subject-matter experts effectively and efficiently engage in outreach through events and products
- APL outreach fosters crosscultural understanding and greater social equity





The EZIE mission reflects the timely convergence of a new compact sensor technology and the emergence of high-heritage CubeSats to provide insight into decade old mysteries surrounding the aurora

# THE SCIENCE

#### What?

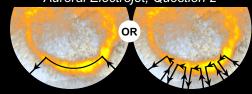
- EZIE will image the magnetic signature of the ionospheric electrojets and reveal the underlying processes.
- · Electrojets are electrical currents related to the aurora.

#### How?

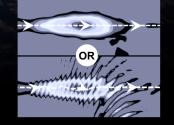
- Three identical CubeSats will be deployed in a pearls-on-astring, sun-synchronous polar orbit.
- Each CubeSat will provide four simultaneous remote sensing vector magnetic field measurements using the Zeeman splitting of the atmospheric O<sub>2</sub> thermal emissions.
- Each orbit provides three maps of the electrojet current, one per CubeSat, to reveal spatial structure and temporal evolution.

#### Why?

 EZIE will uncover physics required for better prediction of space weather, which impacts our increasingly technological society.


#### **Science Questions**

• EZIE will test competing and much debated hypotheses regarding the current circuit linking Earth and near-space.




2

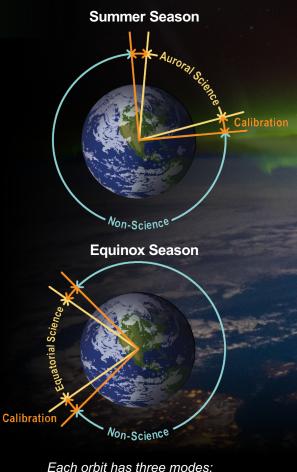
Auroral Electrojet, Question 2



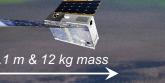
Equatorial Electrojet



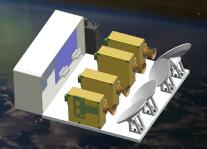





The EZIE mission reflects the timely convergence of a new compact sensor technology and the emergence of high-heritage CubeSats to provide insight into decade old mysteries surrounding the aurora


## THE MISSION

#### At a Glance


- Measurements of the structure and evolution of the ionospheric electrojets will resolve decades-old mysteries regarding the vast Earth–Space electrical current circuit.
- Each CubeSat carries a compact Microwave Electrojet Magnetogram (MEM) instrument that uses the Zeeman effect to infer magnetic fields at ~80-km altitude, close to the source current.
- Differential drag maneuver techniques demonstrated on past missions provide the desired along-track separation.
- High-heritage designs will deliver a mission with high science impact at low cost and low risk.
- Mission architecture provides high resilience to unplanned scenarios.



- Science (pointing nadir)
- Calibration (pointing to cold space)
- Non-Science (communications, drag, & charging)



6U-CubeSats have flight-proven performance from previous missions.



The MEM provides 4 simultaneous vector magnetic field measurements.



Launching in fall 2024, EZIE has robust schedule reserves.

